
Simultaneous Localization and Mapping on a Humanoid Robot

Alexander Khoury
A11563298

17 December 2017

I. INTRODUCTION
In many applications in robotics, in order for a robot

to properly interact with the world around it, it requires
information about its position in this world, and information
about the world itself. This presents a problem in unexplored
– in the robots perspective – environments, as the robot is
seeing the world for the first time, and somehow has to
infer its position from this limited information. This paper
presents a solution to this problem, achieving simultaneous
localization and mapping.

II. PROBLEM FORMULATION
Using data from odometry, IMU, and lidar on a humanoid

robot, implement simultaneous localization and mapping
(SLAM). Maintain a 2-D map of the environment, and the
robots trajectory. Use RGBD data to color the floor of the
2-D map.
• Mapping:

Using a laser scan and the current robot position,
create/update a 2-D occupancy grid with the information
from the scan.

• Localization:
Using a particle filter, estimate the pose of the robot
over time. Using a prediction update sequence, predict
the next position of the particle using the odometry mea-
surements, and update this position using scan matching
on the current map.

• Texture mapping:
Implement depth image to rgb image registration, then
transform the points from the optical frame to the
world frame. Threshold the height to determine the floor
points, then paint the map floor the appropriate color
determined by registration.

III. TECHNICAL APPROACH
A. The Robot: THOR

Thor is a humanoid robot equipped with many different
sensors, of which this project only uses a few. Using the
geometric properties of the robot itself, homogeneous trans-
forms could be made from origin of the robot to the various
sensors. The origin is defined as the torso of the robot.

originTsensor =

[
originRsensor originpsensor

0 1

]
(1)

Where originRsensor and originpsensor represent the rota-
tional and translational offsets from the origin to the sensor.
Oftentimes, smaller transforms can be chained to produce

the final transform. For example to determine the transform
from lidar (l) to origin (b) through the head frame (h):

bTl =

[
bRh bph
0 1

]
·
[
hRl hpl
0 1

]
(2)

Thor has a head motor and neck motor, allowing for the
head to pitch and yaw. Throughout the SLAM algorithm,
we must recalculate our transforms constantly to account
for head movement.

The world frame is defined at [0, 0, 0] and is initialized on
robot startup. As the robot moves, the robot pose is defined
in terms of this frame.

Fig. 1. THOR

B. Mapping

Given the robot pose, and the lidar scan measured at that
time, the goal is to construct a 2-D occupancy grid denoting
free, occupied, and unexplored spaces.

1) Remove scan points that are too far r > 30 meters or
too close r < 0.2 meters

2) Transform lidar scan from Polar (r, θ) to Cartesian
(xl, yl, zl) in lidar frame (l):

xl = r · cos(θ) yl = r · sin(θ) zl = 0 (3)

3) Transform lidar points (xl, yl, zl) from lidar frame (l)
to the world frame (w):

xw
yw
zw
1

 = wTl ·

xl
yl
zl
1

 (4)

wTl as described in the previous section by chaining
transforms from lidar to head to origin to world.

4) Threshold zw to remove floor points. Due to the
fact the head is able to pitch, when the robot looks
downwards, the lidar will see the floor, and we do
not want to treat them as objects/walls. Therefore we
remove points zw < .1.

5) In order to visualize this map, the points were scaled
and translated such that they can be mapped on an
image plane. Using an map resolution of .05 meters
per pixel, each point is transformed accordingly. The
world frame is shifted to the center of the image. Due
to the fact we are looking to create a 2-D map, zw
becomes unimportant, and only xw, yw need to be
converted to coordinates in the occupancy grid xc, yc.

6) These coordinates represent locations where the
lidar saw an object/wall, which corresponds to an
occupancy. Thus because the lidar’s ray was able to
reach that coordinate, we can conclude that all the
points leading up to that position from the robot pose
are unoccupied or free. Bresenham’s 2D ray-tracing
algorithm allows for the calculation of these free
points by tracing from the robot pose to the occupied
cell.

7) With a collection of occupied coordinates and free co-
ordinates, the occupancy grid can be updated. For each
cell in the occupancy grid is an associated probability
for which that cell is occupied. These probabilities can
be accumulated per iteration, and thresholded to create
the occupancy map. For example, we can threshold the
probability map as:

free coordinates = probability map < 0.3

occupied coordinates = probability map > 0.7
(5)

These thresholds can be adjusted to suit performance
and quality needs.

8) In order to update the probability map, we must
accumulate the odds that a certain cell is occupied/free.
We define a map called the log odds map, where these
odds are accumulated. The odds of a measured lidar
scan can be computed from a ratio of trust in this
measurement. The odds of any given cell mi being
occupied g(1), can be computed as:

g(1) =
P (zt = 1|mi = 1)

P (zt = 1|mi = 0)
(6)

Where zt represents whether the lidar scan indicated
the cell as occupied at time t. The odds of the cell
being free g(0) is subsequently computed as:

g(0) =
1

g(1)
(7)

Thus the log odds map can be updated by accumulating
the log(odds) at the current time step for each cell.

λ(mi)t = λ(mi)t−1 + log(g(zt)) (8)

where λ(mi)t−1 represents the accumulated log odds
of the previous time step and zt represents whether the
lidar measured the cell occupied (1) or free (0) at the
current time step t.

Fig. 2. Log odds map for Dataset 0

Although hard to see, the larger the odds in a cell
being occupied, the more blue it is. The larger the
odds in a cell being free, the more red. The odds of
unexplored cells remains 0, and it is shown in light
blue.

The probability of the cell being occupied can be
recovered:

p(mi|z0:t) = 1− 1

1 + eλ(mi)t
(9)

And subsequently the occupancy grid can be calculated
using (5).

Fig. 3. Occupancy grid for Dataset 0

C. Localization

In order to localize the robot in the environment, we
can implement a particle filter. One way to look at the
particle filter is that stores, perturbs, and updates a number
of hypotheses for the position of the robot. More formally, it
is approximating the distribution of the state at time t given
observations up to time t, denoted as xt|t, as a weighted sum
of delta functions.

xt|t = [xt, yt, zt, θt]
T , pt|t(x) ∼

K∑
k=1

α
(k)
t|t · δ(xt|t;µ

(k)
t|t)

(10)
xt|t represents the 3-D pose of the robot, although in our
case, zt = 0. K represents the number of particles that are
initialized.

Initialization:
In order to initialize our particles, K random vectors R4

can be sampled from a Gaussian distribution, defining K
perturbations v(k):

v(k) where v(k) is sampled from N (0, V)

V = diag(σ2
x, σ

2
y, 0, σ

2
θ)

(11)

Note that the variance associated to the z component of the
pose is 0, because we are only dealing with a 2-D map, and
thus perturbations to the z component would be unnecessary.

Also note that our pose xt|t, can be written in terms of
homogeneous transforms Xt|t:

Xt|t =

[
R(θt) pt
0 1

]
(12)

Where R(θt) represents the rotation matrix generated by
θt. And pt represents the position components of the state,
[xt, yt, zt]

T Similarly, our noise vector can also be written in

this form as Vt|t. Thus, our particles can be initialized with
the product of these transforms.

X
(k)
0|0 = X0|0 · V

(k)
0|0

Where we let x0|0 = [0, 0, 0, 0].
Our weights α(k)

t|t can all be initialized to 1/K, giving equal
probability to each particle.

Motion Model and Prediction:
Thor is moving throughout the environment, thus these
particles need to be propagated through the model that
describes the motion of Thor. Note that our control input
ut|t, which describes the movement of the robot, can be
written in terms of homogeneous transform as well, Ut|t.
Thus at every time step, the prediction step of the particle
filter consists of perturbing all of the particles, then applying
the control input transform Ut|t to each particle. Thus our
motion model becomes:

X
(k)
t+1|t = X

(k)
t|t · V

(k)
t|t · Ut|t (13)

In order to determine our control input, we utilize the
odometry data. Note that the odometry data suffers from a
drift over longer periods of time, thus we define the control
input ut|t as the difference between two consecutive odom
poses, and since the time difference between the poses is
small, this drift is minimized.

ut = ot+1 − ot

However, our control inputs and odom poses live in SE(3).
Thus we must use a similar method as our motion model,
representing each odom pose as a transform, with subtraction
being defined in this space as an inverse:

Ut|t = O−1t+1 ·Ot (14)

Observation Model and Update:
In order to update the prediction step, we define a observation
model very specific to our application. Our observation
model is defined as a laser scan matching model, which
requires knowledge of our current occupancy map m, laser
scan z, and robot pose xt+1|t, where we model the correla-
tion between the scan and the current map.

1) Transform lidar scan to the world frame.
2) Compute the correlation between the map and the scan

corr(z,m) =
∑
i

1{zi = mi} (15)

which corresponds to the number of ”hits” the scan
makes on the map.

Fig. 4. Scan with high correlation

Fig. 5. Scan with low correlation

3) Use the softmax function to convert the correlation
scores of all the particles to probabilities

P (z(j)|x(j)t+1|t,mt) =
ecorr(z(j),mt)∑K
k e

corr(z(k),mt)
(16)

4) The best particle is chosen as the particle with the
highest correlation score, or largest P (z(j)|x(k)t+1|t,mt).

5) The updated weights α(k)
t+1|t+1 can be calculated using

the probabilities from the softmax function

α
(k)
t+1|t+1 =

α
(k)
t|t · P (z

(j)|x(j)t+1|t,mt)∑K
k α

(k)
t|t · P (z(k)|x

(k)
t+1|t,mt)

(17)

6) However, if many of these correlations are bad, then we
may get a lot of particles with very small weights ∼ 0.
In this case we may need to resample our particles to
ensure a good number of quality hypothesis. In order
to determine whether or not we need to resample, we
compute the number of effective particles

Neff =
1∑K

k (α
(k)
t+1|t+1)

2
(18)

If this value is less than a set threshold, for example
Nthresh = 0.1 ∗K, then we resample.

7) A simple way to resample, is to just randomly select K
new particles from the current particles with probabil-
ity equal to their weight. The problem with this is there
is chance the best particles (ones with high weight)
will not be selected, thus losing a good hypothesis.
We can improve upon this with a different resampling
method. The method used for resampling is Stratified
Resampling. This resampling method guarantees that
samples with large weights appear at least once and
those with small weights appear at most once. The
resampling method creates K new particles, with new
weights being identical 1/K. These particles become
the particles for the next iteration.

D. Texture Mapping
In order to color the floor of the map, the RGBD camera

is used. The process for mapping the points is as follows:
1) Utilizing the transform between the infra-red camera

and the RGB camera, and the intrinsics of both cam-
eras, registration between the depth points and the
colors of the RGB images can be computed.

2) Once the depth points have been matched to colors in
the RGB image, we need to transform the depth points
to the world frame in order to find the floor points.

3) Threshold the height of the world frame depth points,
and determine what points are floor.

4) Paint the 2D map with the corresponding colors from
the floor points.

IV. RESULTS AND DISCUSSION

The results on the training data performed pretty well, with
the exception of dataset 1, where midway through the scan
matching was not able to extract and perpendicular features,
meaning it kept thinking it was not moving, since it was
matching vertical lines to vertical lines. The test dataset is
similar to this, but I instead encountered a problem where
the map would have a yaw offset at one of the corners which
would mess up the scan matching the future when it closed
the loop. In the time allotted, I was not successful in getting
a good texture map computed. Below is the texture map for
dataset 0.

Fig. 6. Failed texture map for Dataset 0

Results on training data:

Fig. 7. Dataset 0 (Left) and Dataset 1 (Right). Note in the bottom right turn in dataset 1, there is pose ”ball” where the trajectory got stuck, if it had not
gotten stuck there, the map would have looked really good.

Fig. 8. Dataset 2

Fig. 9. Test Dataset. Note that after this point, it has a trouble matching the scan to close the loop.

	INTRODUCTION
	PROBLEM FORMULATION
	TECHNICAL APPROACH
	The Robot: THOR
	Mapping
	Localization
	Texture Mapping

	Results and Discussion

