
Orientation Estimation with Panoramic Image Stitching
using an Unscented Kalman Filter

Alexander Khoury
A11563298

15 November 2017

I. INTRODUCTION
Many of the technological advancements we take for

granted today, utilize some form of orientation estimation.
Whether it is as simple as tilting our phone sideways to get a
better look at a picture or document, or even something more
complicated, like a drone stabilizing itself in the air, robust
orientation estimation is needed. Sensors that measure how a
device is moving in space can be very noisy or even drift, and
simple estimation techniques may not be enough for certain
applications. In this paper, we discuss an algorithm for non-
linear orientation estimation for an 6-DOF IMU mounted
on a camera. We apply the orientation estimates to images
taken at those orientations to generate a panorama of the
environment around it.

II. PROBLEM FORMULATION
Using data from an Inertial Measurement Unit (IMU),

implement an Unscented Kalman Filter to track the 3-D
orientation of a rotating camera. Then use the estimated
orientations construct a panorama from a dataset of images
collected.
• Unscented Kalman Filter using data from IMU:

Remove the bias and scale factors from the IMU data.
Then implement a quaternion-based UKF based on
Edgar Kraft’s paper.

• Image Stitching into Panorama:
Use the estimated orientations to project the associated
images onto a unit sphere. Then unwrap the image
sphere to create a panoramic image.

III. TECHNICAL APPROACH
A. Sensor Calibration

An IMU is a sensor that measures accelerations and
rotational velocities along/around all three Cartesian axes.

Accelerations (g) : [ax, ay, az]

Rotational V elocities (rads/sec) : [wx, wy, wz]
(1)

The sensor reports its values using an ADC, so the
values must be converted to physical units using the given
conversion formulas.

value = (raw data − bias) · scale factor + offset

scale factor =
V ref

1023 · sensivity
(2)

Sensor bias can be calculated by taking the average of the
first 2 seconds of data, where we assume the IMU to be
steady.

Offset is 0 for all measurements except az where it is 1. This
is because if the IMU is not moving and level, we should be
seeing 1g in az .

Sensitivity values and voltage reference values can be found
in the datasheet for the sensors.

gyroscope sensitivity = 3.33 ∗ 180/π

accelerometer sensitivity = 330

V ref = 3300 mV

(3)

B. Unscented Kalman Filter: Background
To implement the Kalman filter, or any non-linear variant,

we require knowledge on how to predict the next state given
the current state. This relationship is oftentimes called the
motion model. The motion model is often times derived from
the kinematics of the system, where it is a function of the
current state and control input. A generalized motion model
equation can be written as:

xt+1|t = a(xt|t, ut,w)

where xt|t represents the state at time t thus t + 1 is the
next state. The motion model is then some function a(·) that
predicts the next state from the previous state as well as the
control input ut. The notation t+ 1|t denotes the state t+ 1
using sensor information up to time t. We also assume that
this prediction does not perfectly predict the next state, thus
we describe this uncertainty in the form of the process noise
w.

The Kalman filter works on a two step calculation, predict
and update. As mentioned before, the motion model is used
to predict the state xt|t to the next, xt+1|t.

Subsequently the update step takes that prediction and cor-
rects it with a measurements taken from sensors. Thus, a
model corresponding to our sensors is needed, aptly named
the observation model:

xt+1|t+1 = h(xt+1|t, v)

The function h(·) describes the transformation from our
predicted state xt+1|t to our updated state xt+1|t+1. Again

https://pdfs.semanticscholar.org/3085/aa4779c04898685c1b2d50cdafa98b132d3f.pdf

we assume our measurement from our sensor is noisy, thus
adding a term modeling this noise v.

Important assumptions are made to derive a non-linear filter
such as the UKF:

• The prior pdf of x0|0 is Gaussian.
• The motion model noise, process noise, w is Gaussian.
• The observation model noise, measurement noise, v is

Gaussian.
• The process noise w and measurement noise v are

independent of each other and of the state xt.
• The posterior of the prediction step of the state xt+1|t+1

is forced to be Gaussian via approximation (moment
matching).

The prior, process noise, and measurement noise can then be
modeled as Gaussian:

xt|t ∼ N (µt|t,Σt|t)

w ∼ N (0,W)

v ∼ N (0, V)

(4)

In a non-linear filter, the predicted distribution are no longer
guaranteed Gaussian, therefore, to prevent the distribution
from becoming more and more complicated through
iterations, we approximate the distribution as Gaussian, via
moment matching. To achieve this, we calculate the first
two moments of the resulting distribution, and replace it
with a Gaussian distribution with those same two moments.
In order to do this, five integrals must be computed
corresponding to the moments of the joint distribution
(xt+1|t, zt+1):

(
xt+1|t
zt+1

)
∼ N

((
µt+1|t
mt+1|t

)
,

[
Σt+1|t Ct+1|t
CT

t+1|t St+1|t

])

µt+1|t =

∫ ∫
a(x, ut,w)Φ(x;µt|t,Σt|t)Φ(w; 0,W)dxdw

mt+1|t =

∫ ∫
h(x, v)Φ(x;µt|t,Σt|t)Φ(v; 0, V)dxdv

Σt+1|t =

∫ ∫
a(x, ut,w)a(x, ut,w)T

· Φ(x;µt|t,Σt|t)Φ(w; 0,W)dxdw − µt|t · µT
t|t

Ct+1|t =

∫ ∫
(a(x, ut,w)− µt|t)(h(x, v)−mt|t)

T

· Φ(x;µt|t,Σt|t)Φ(v; 0, V)dxdv

St+1|t =

∫ ∫
h(x, v)h(x, v)T Φ(x;µt|t,Σt|t)Φ(v; 0, V)dxdw

−mt|t ·mT
t|t

(5)
Where Φ(x;µt|t,Σt|t) is the Gaussian distribution of x with
mean µt|t and covariance Σt|t. Then the conditional Gaussian
distribution of (xt+1|t+1|zt+1), or updated distribution, can
be computed from these moments:

Kt+1|t = Ct+1|tS
−1
t+1|t

µt+1|t+1 = µt+1|t +Kt+1|t(zt+1 −mt+1|t)

Σt+1|t+1 = Σt+1|t −Kt+1|tSt+1|tKt+1|t

(6)

With non-linear models, it can easily be seen that these
integrals can become quite complex, or even unsolvable.
Thus, we once again must turn to approximations.

There are two mainstream methods of approximating these
moment integrals, the
Extended Kalman Filter (EKF), and the Unscented
Kalman Filter (UKF). The Extended Kalman Filter uses
first-order Taylor series approximations around a nominal
state to linearize the motion and observation models, making
the integrals straightforward to compute. However this is
highly dependent on how closely the linearization approx-
imates the models. If this approximation is not accurate, the
EKF will not produce good results.

In these cases, the UKF outperforms the EKF, because it is
able to use the non-linear models without approximation to
propagate states. To do this, the UKF utilizes the unscented
transform. In the unscented transform, 2d+ 1 sigma points
are calculated, where d is the dimension of the state. The
sigma points are chosen to capture the shape of the original
distribution, and the advance they hold over linearization is
that they can be propagated through the nonlinear models,
and greatly simplify the integrals discussed for moment
matching. Instead of having to calculate the integrals for the
all the points in the distribution, only the weighted sums of
the integrands over the sigma points need to be calculated
(this will be more clearly defined later).

The first sigma point is chosen to be the mean, and the rest of
sigma points are calculated using the mean-shifted columns
of the square root covariance of the state:

X (0) = µt|t, X (i) = µt|t ± β·d·columns(
√

Σt|t) for i = 1 · · · 2d

(7)
Where

√
Σt|t can be calculated using the Cholesky

Decomposition, Σt|t =
√

Σt|t
√

Σt|t
T , and β represents

a tunable scaling factor that is applied to said columns,
determining spread. A good starting point is β = 1.

Further assuming noise is additive, the five moment integrals
can then be rewritten using the sigma points X (i):

Weights: W
(m)
0 = 0, W

(c)
0 = 2, W

(m)
i = W

(c)
i =

1

2d

µt+1|t =
2d∑
i=0

W
(m)
i a(X (i)

t|t , ut)

mt+1|t =

2d∑
i=0

W
(m)
i h(X (i)

t+1|t)

Σt+1|t =

2d∑
i=0

W
(c)
i (a(X (i)

t|t , ut)− µt+1|t)(a(X (i)

t|t , ut)− µt+1|t)
T

Ct+1|t =

2d∑
i=0

W
(c)
i (a(X (i)

t+1|t, ut)− µt|t)(h(X (i)

t+1|t)−mt|t)
T

St+1|t =

2d∑
i=0

W
(c)
i (h(X (i)

t+1|t)−mt+1|t)(h(X (i)

t+1|t)−mt+1|t)
T + V

(8)

Thus if we specify the motion and observations models
a(X (i)

t|t , ut) and h(X (i)

t+1|t), we can implement our UKF using
equations (6) and (7).

C. Unscented Kalman Filter: Implementation
1) Quaternion Math:

Orientation will be defined as a quaternion q, where q =
q0 + q1i + q2j + q3k, or is often seen as a scalar and
vector component [qs, qv] = [q0, [q1, q2, q3]]. Quaternions
do not suffer from gimbal lock, which is ideal for tracking
orientation of any body with complex movements. In order to
use quaternions in our algorithm, simple mathematics need to
be defined for quaternions. Let q and p be quaternions, with
scalar components qs, ps and vector components qv, pv:

Addition: q + p = [qs + ps, qv + pv]

Multiplication: q ◦ p = [qsps − qTv pv, qspv + psqv + qv × pv]

Conjugate: q̄ = [qs,−qv]

Norm: |q| =
√
q2s + qTv qv

Inverse: q−1 =
q̄

|q|2

Rotation: [0, x′] = q ◦ [0, x] ◦ q−1 = [0, R(q)x]

Exp Map: exp(q) = eqs · [cos ||qv||,
qv
||qv||

sin ||qv||]

Log Map: log(q) = [log |q|, qv
||qv||

arccos
qs
|q|]

(9)
Note that exp map can construct a quaternion from a rotation
vector w: q = exp([0,

w

2
]). And the rotation vector can be

recovered using Log map, [0, w] = 2 · log(q). We will use
these two to convert to and from quaternions to simplify
calculations.

2) State Definition:

The 7-dimensional state vector of our Kalman filter will
consist of a quaternion, qt εR4 that represents the orientation
of the state, and the angular velocity wt ε R

3.

xt =

(
qt
wt

)
ε R7

where qt is a unit quaternion with components [qt,s, [qt,v]]
and the three components of the angular velocity wt are
[wt,x, wt,y, wt,z].

Recall that with the UKF motion and observation models,
we assume that there is process noise w and measurement
noise v is affecting the system. And as a result to the
moment matching, the probability density function of our
state is also be Gaussian. Thus, the covariance matrices
Σ0|0, W, V for the Gaussian models can be initialized to
γ · I , where γ can be tuned to increase accuracy of the
estimate. A good starting vale Also as per the problem, we
can assume our system is relatively level at time t = 0, so we
can initialize our state to q0 = [1, 0, 0, 0] and w0 = [0, 0, 0].

3) Motion Model:

The motion model for the seven dimensional state vector
X (i)

t+1|t:

X (i)

t+1|t = a(X (i)

t|t , ut) =

(
q
(i)

t|t ◦ qw ◦ qut

wt|t + ww

)
(10)

where ◦ represents quaternion multiplication. ww represents
the noise in w, and qw represents the noise affecting q

(i)

t|t .
q
(i)

t|t is the quaternion portion of the state X (i)

t|t , and wt|t is
the rotational velocity portion of the state. qut is the control
input affecting the state, which is defined as the increment in
orientation calculated using the differential rotational velocity
from the last time step.

qut = exp
(
[0,

wt|t

2
])

where exp(·) represents the quaternion exponential map that
constructs a quaternion from a rotational vector.

Because the noise in the motion model is defined additively,
we can instead model the noise during the calculation of the
sigma points,

X (0) = µt|t, X (i) = µt|t ± β · d · columns(
√

Σt|t +W)
(11)

where W is the covariance of the process noise w. Further
explained in section 5), our dimension d will be 6 instead of
7 because our covariance matrices are 6× 6. This simplifies
our model to:

X (i)

t+1|t = a(X (i)

t|t , ut) =

(
q
(i)

t|t ◦ qut

wt|t

)
(12)

4) Observation Model:

Z(i)
t+1 = h(X (i)

t+1|t) =

(
q̄
(i)

t+1|t ◦ [0, g] ◦ q(i)t+1|t
wt+1|t

)
(13)

where g is a vector corresponding to gravity in our
system. Thus [0, g] = [0, [gx, gy, gz]] = [0, [0, 0, 1]].
q̄
(i)

t+1|t is the conjugate of the quaternion q
(i)

t+1|t. The
quaternion component of the observation model corresponds
to rotating a gravity vector by all of our sigma points,
which then become our predicted measured value from the
accelerometer. Only the vector component of the resulting
quaternion is taken, giving us a predicted measurement with
dimensions 6× 1.

5) Computing Covariance with a Quaternion State:

Computing the covariance given a quaternion state can
be computed by constructing a rotation vector from the
quaternion with the log map, and using that rotation
vector instead of the quaternion in the state. Therefore,
the covariance equations in (7) can be computed with a
6-dimensional state, instead of 7. Therefore, all covariance
matrices will be R6×6.

6) Quaternion Averaging:

Calculating the mean µt+1|t in equation (7) is non-trivial,
as it corresponds to taking the weighted average of
2d + 1 quaternion vectors, which cannot be computed with
traditional methods.

Consider a group of n quaternions [qi]
n
i=1 with corresponding

weights [αi]
n
i=1. A weighted quaternion average can be

computed with the pseudocode in Algortihm 1, where q̃ is
the previous average estimate:

Algorithm 1 Weighted Quaternion Average
1: q̃k=0 ← previous quaternion estimate from UKF
2: for k = 0, 1, · · ·K :

compute quaternion error between q̃k and [qi]
n
i=1

3: qei = [qes,i, q
e
v,i] = q̃−1k ◦ qi

compute the error rotation vector with log map
4: [0, ev,i] = 2 · log(qei)

restrict angles to [−π, π)

5: ev,i = (−π + mod(||ev,i||+ π, 2π)) ∗ ev,i
||ev,i||

take the weighted average of the error vectors
6: ev =

∑n
i=1 αiev,i

shift average estimate towards true average w/ exp map
7: q̃k+1 = q̃k ◦ exp([0,

ev
2

])

define average convergence based on norm of ev
8: if ||ev|| < ε :
9: return q̃k+1

7) Update Step with Quaternions:

In order to update the quaternion portion of the state, the
update equation of (6), is different for the quaternion part:

q̂t+1|t+1 = q̂t+1|t ◦ exp([0,
1

2
Kt+1|t(zt+1 −mt+1|t)])

D. Panoramic Image Stitching
1) Time Matching

The camera and the IMU report their data at different rates,
such that there are less images than IMU data. In order to
compensate for this, the orientation with time-stamp closest
to each image was used.

2) Convert Index Array to Spherical Coordinates

The main idea to this algorithm is to project the images
onto the unit sphere based on its orientation. To do this, we
can calculate what a unrotated index array will correspond
to in the unit sphere, using information about the FOV
of the camera. These coordinates take the form (r = 1, θ, φ).

3) Convert Index Array to Cartesian

Next, we can convert these locations to 3-D Cartesian
coordinates, such that we can apply the rotation
transformations. These equations take us from Spherical to
Cartesian coordinates (r, θ, φ)→ (x, y, z)

x = r · sin(φ) cos(θ)

y = r · sin(φ) sin(θ)

z = r · cos(φ)

(14)

where r is forced to be 1.

4) Rotate the Index array by each Quaternion Orientation

Using properties of quaternions, we are able to rotate each
index array to their corresponding location in Cartesian
coordinates using quaternion multiplication.

[0, v′] = q−1 ◦ [0, v] ◦ q = [0, R(q)x]

Note that this corresponds to the inverse rotation as defined
previously.

5) Convert back to Spherical

In order to make a panoramic image, we need to project
these back onto a unit sphere, where we can unwrap the
transformed index collection into one stitched 2-D image.
We can achieve this using the following equations on our
point set:

r = x2 + y2 + z2

θ = arccos(
z

r
)

φ = arctan(
y

x
)

(15)

6) Unwrap the Image Sphere
After scaling, shifting, and (int) casting the coordinates such
that they represent reasonable indices (positive throughout
and unique within one image), we paint each pixel in the 2-
D image in the location of the coordinates, with color defined
by the corresponding image.

i =
width · 5

2π
· θ

j =
width · 4

π
· (φ+ π)

(16)

IV. RESULTS AND DISCUSSION

A. Training
The training data given included 9 training datasets to work with,

each consisting of raw IMU data and a truth dataset, where the
truth data was captured using a Vicon motion capture system. Four
of these datasets contained images taken whilst the camera was
rotating, allowing construction of a panoramic image for that set.
As a baseline for performance, we can preform a simple integration
of the IMU data, which is calculated by taking the current estimate
and propagate that through the quaternion portion of the noiseless
motion model, denoted by equation (10):

qt+1|t = q
(i)

t|t ◦
(
[0,

wt|t

2
]) (17)

These quaternions plotted against the Vicon data as Euler angles:

Fig. 1. Integration Estimation for Dataset 1 (Training)

As you can see, the integrated angles, shown in blue, match the
shape of the true angles, shown in orange; however the amplitudes
are incorrect, and sudden changes in angle are not reflected. This
is not sufficient for our case, thus this validates our need for more
advanced estimation techniques. Below is the result of the UKF on
the same dataset.

Fig. 2. UKF Estimation for Dataset 1 (Training)

Clearly it can be seen that the estimated orientation follows the
truth dataset very closely, and completely matches in many areas.
With this improved estimate, we can hope to reconstruct a panorama
of the environment around it. Below is the constructed panorama
from the above UKF estimates.

Fig. 3. Panorama for Dataset 1 (Training)

Sometimes, small oscillations may appear in the UKF estimate,
resulting in a noisy estimate. This can be combated by adjusting β
in equation (11), as well as the covariances with γ defined in the
section ”State Definition”.

The estimates for dataset 8 (Training) contained small oscilla-
tions, and by adjusting β : 1 → .01, I was able to achieve much
better results:

Fig. 4. UKF Estimation before noise correction (top), and after noise
correction (bottom), Dataset 8 (training)

Overall, I would say the performance on the training set is
successful, and other than having to tweak parameters to reduce
noise, tracked the truth data pretty well. The performance on the
datasets containing images are shown in Figures 5-8 below.

B. Test Results
Separate test data was obtained, and unlike the training data,

there was no Vicon truth data. Therefore, plots from the test data
only contain the estimate. Based on the quality of the panoramas
achieved, orientation tracking for all of the test datasets was
successful, however improvements could still be made. Ideally the
image stitching would look more seamless, rather than the stacking
appearance achieved. Figures 9-12 below depict these results.

REFERENCES

[1] E. Kraft, A Quaternion-Based Unscented Kalman Filter for Orientation
Tracking, in Proc. Sixth International Conference of Information
Fusion, vol. 1, 2003, pp. 4754.

Training Results:

Fig. 5. UKF Estimation (Left) and Panoramic Image (Right) for Dataset 1 (Training)

Fig. 6. UKF Estimation (Left) and Panoramic Image (Right) for Dataset 2 (Training)

Fig. 7. UKF Estimation (Left) and Panoramic Image (Right) for Dataset 8 (Training)

Fig. 8. UKF Estimation (Left) and Panoramic Image (Right) for Dataset 9 (Training)

Test Results:

Fig. 9. UKF Estimation (Left) and Panoramic Image (Right) for Dataset 10 (Test)

Fig. 10. UKF Estimation (Left) and Panoramic Image (Right) for Dataset 11 (Test)

Fig. 11. UKF Estimation (Left) and Panoramic Image (Right) for Dataset 12 (Test)

Fig. 12. UKF Estimation (Left) and Panoramic Image (Right) for Dataset 13 (Test)

Results from non-image training data:

Fig. 13. UKF Estimation for Dataset 3 (Left) and Dataset 4 (Right))

Fig. 14. UKF Estimation for Dataset 5 (Left) and Dataset 6 (Right)

Fig. 15. UKF Estimation for Dataset 7

	INTRODUCTION
	PROBLEM FORMULATION
	TECHNICAL APPROACH
	Sensor Calibration
	Unscented Kalman Filter: Background
	Unscented Kalman Filter: Implementation
	Panoramic Image Stitching

	Results and Discussion
	Training
	Test Results

	References

