
Project 1: Color Segmentation

Alexander Khoury
A11563298

January 26, 2018

1 Introduction

The problem of fast object detection using vision algorithms is very useful in the field of
robotics, whether it is used for applications such as obstacle avoidance, or even localization.
In this project, we look to robustly detect a red barrel in an image in a highly varying
environment in minimum computation time.

2 Problem Formulation

Let Xm×n be an RGB image which contains one or multiple red barrels, and let xi,j ε R3 be
the pixel corresponding to the i, j component of the image. Letting k be the number of color
classes, estimate a multi-dimensional Gaussian distribution for each color class. Classify each
pixel, xi,j, in the image under the single Gaussian assumption. After the image is segmented
into k colors, use statistical methods to analyze the red regions to locate the barrels, and
estimate the distance to the barrel using regression methods.

3 Technical Approach

3.1 Labeling

Given a training set of 50 images each containing one or more barrels, each image needed
to be annotated with examples from each of the k color classes. This requires an intelligent
selection of classes, as well as an efficient labeling method.

3.1.1 Color Class Selection

Because the most important class is the color of the barrel, optimal color classes should fill
a majority of the color space, as well as include colors closer to barrel color, barrel-red, such
that the algorithm can differentiate between barrel red and other near-red colors. Thus the
k = 6 classes intuitively defined are as follows: barrel-red, not-barrel-red, brown, light gray,

1

dark gray, and green, where the not-barrel-red class consists of colors that are close to barrel
red, such as different shades of red, orange, and violet.

Figure 1: Using roipoly to annotate the barrel-red color class with a

3.1.2 Annotation

Using the roipoly package, color classes could be labeled by interactively drawing a polygon
onto a window containing the image. Once a polygon is defined, all the pixel values and
other features within the polygon can be easily obtained. Moving from one class at a time,
each image was labeled with as many examples of the class as possible.

In addition to classifying the pixels into the k color classes, distance to the barrel needed
to be estimated from the geometric properties of the barrel. The distances to the training
barrels were given for every image, thus by annotating a tight rectangle around the barrel, the
barrel’s geometry was captured. All the examples were serialized and saved to file allowing
for later use.

2

https://github.com/jdoepfert/roipoly.py
https://github.com/jdoepfert/roipoly.py

3.2 Training

Using the information obtained by labeling the training images, we are able to estimate the
parameters of our Gaussian model, as well as fit a regression model to the barrel’s geometric
data to compute distance to the barrel.

3.2.1 Preprocessing

For each color class, pixels from annotated regions were extracted and separated, to achieve
large amounts of pixel examples for each color class.

3.2.2 Calculating MLE parameters of Gaussian model

The conditional distribution for a pixel xi,j ε R3 in an image given the color class Y = k can
be modeled under a Gaussian assumption as:

PX|Y (xi,j|Y = k;µk,Σk) =
1√

(2π)3|Σk|
exp

(
−1

2
(xi,j − µk)TΣk

−1(xi,j − µk)
)

(1)

The MLE for parameters ω = [µk,Σk] can then be obtained, where X is a N × 3 vector of
pixels from class k.

wMLE = argmax
µk,Σk

PX|Y (X|Y = k;µk,Σk) (2)

which when evaluated corresponds to the sample mean and sample covariance of the observed
data X,

µk =
1

N

N∑
i=1

xi

Σk =
1

N

N∑
i=1

(xi − µk) · (xi − µk)T
(3)

3.2.3 Exponential fit for distance estimation

In order to estimate the distance from the barrel to the camera, we needed to fit a regression
model correlating our distance and geometric data from the barrels. Looking at the plot of
width of the barrel versus distance (below), we can see there is a exponential relationship
between the two.

3

Figure 2: An negative-exponential relationship can be seen relating distance to barrel and
the width of the barrel in pixels

Thus an exponential regression model was used, taking the form,

y = ea+b·x (4)

letting y be the distance to the barrel, and x being the width or height of the barrel. Note
that after taking the natural log of both sides,

ln(y) = a+ b · xi (5)

we can define our error as,
e = ln(y)− a− b · x (6)

with which we can define a weighted loss function,

minimize
N∑
i=1

yi · (ln(y)− a− b · x)2 (7)

which after taking the partial derivative which respect to each parameter and solving, using

the notation < x >=
1

N

∑N
i=1 xi[

a
b

]
=

[
< y > < xy >
< xy > < x2y >

]−1

·
[
< y · ln(y) >
< xy · ln(y) >

]
(8)

which can be used to calculate distance from the width or height in pixels of the barrel.
Thus, to improve accuracy, an exponential fit was preformed for both height and width, and
upon computation of the estimate with test data, the final estimate is the average of the two
estimates.

4

3.3 Segmentation

Given a pixel, xi,j in X, the color class chosen for that pixel corresponds to finding the color
class k that maximizes the log likelihood of our Gaussian model.

argmax
k

log(P (Y = k|X)) = argmax
k

log(P (X|Y = k)) + log(P (Y = k)) (9)

and assuming the prior probability of seeing any color is the same, the equation simplifies
to,

argmax
k

log(P (X|Y = k)) (10)

which after plugging in our model and simplifying is equal to,

argmax
k

log(
√

(2π)3 · |Σk|) +
1

2
(X − µk)TΣk

−1(X − µk) (11)

where we can compute the most likely class for each pixel xi,j and form a color segmented
image.

However, computing the second term, the Mahalonobis distance, in the above equation
for large vectors of size N is computationally expensive, as a N × N matrix would be
computed, whose diagonal represents the N × 1 vector desired. However, using the fact
that, aTV −1a = ‖V −1/2a‖2

2 for a positive definite, symmetric matrix V , calculating the
Mahalonobis distance can be calculated by preforming a Cholesky Decomposition on the
inverse of the covariance matrix, which is positive definite and symmetric matrix Σ−1

k , where
Σ−1
k = STk Sk, can greatly reduce computation time, as the resulting distance for each pixel

in a vectorized image XN×1 can be calculated as follows:

D =
√

(X − 1µTk)STk · 1 where
√
· is a component wise square root (12)

3.4 Detection

Using this color segmented image, a binary mask can be created for the barrel-red pixels in
the image, and using openCV’s findContours function, contours can be drawn around all the
barrel-red regions. We can analyze each of these contour’s properties, such as area, center,
height, and width to narrow down the candidates to the contour that contains the barrel.

One situation that can arise is that portions of the barrel may be covered by an object,
resulting in a partitioning of the barrel’s contour. Such that if any analysis were done on
any of the partitions alone, no barrel would be detected. Only the combination of all the
partitions would result in a detected barrel. Thus any contours whose centroids were located
within a distance threshold from each other were iteratively combined.

From the training data, mean barrel ratio, defined as height/width, was calculated, as well
as the standard deviation in this ratio. A barrel is defined as a contour whose bounding box
satisfies:

µratio − 2 · σratio < Box Ratio < µratio + 2 · σratio
Contour Area > 5 pixels

(13)

5

Setting a lower limit on the contour area help eliminate contours that are too small to be
barrels. Otherwise, by taking advantage the uniform size and shape of the barrels, we are
able to use the ratio between height and width to determine barrelness.

Another situation that can occur is the barrel can be in front of or right next to another
barrel-red like object, where the difference in color was not discriminated via segmentation.
In this case, we may observe a very large contour containing all the objects. Thus the
algorithm works on a two-attempt basis, such that if no barrel is detected on the algorithms
first attempt, it tries again but investigates further into any large red contours, if they exist,
by running a k-means clustering algorithm on the original pixels within the contour. Using
this method, the algorithm hopes to separate the barrel’s color from any other close-red
colors in the contour. The cluster containing a mean closest to the barrel-red sample mean
obtained from training is kept, and the associated pixels would form a new contour (seen
below). Then, if exists, barrel detection would be tried with this new contour.

Figure 3: Contour before k-means (left), Contour after k-means (right)

4 Results

4.1 Training Results

Taking a 80/20 split for training/validation, 710304 training pixels and 143327 validation
pixels, the barrel-red pixels were detected with an error of 0.063212. This error may be due
to human error mislabeling pixels with crudely placed polygons.

4.2 Test Results

This algorithm was able to successfully detect 9/10 barrels in the test images. Images
showing the detected barrels and color segmentations are shown below:

6

Figure 4: 001.JPG, Distance = 5.247m

Figure 5: 002.JPG, Distance = 7.668m

Figure 6: 003.JPG, Distance = 8.375m

7

Figure 7: 004.png, Distance = 1.612m

Figure 8: 005.png, Distance = 7.021m

Figure 9: 006.JPG, Distance = 0.936m

8

Figure 10: 007.JPG, Distance = 8.367m

Figure 11: 008.JPG, Distance = 2.087m

Figure 12: 009.JPG, Distance = 7.509m

9

Figure 13: 010.JPG, Distance = 8.667m

Figure 14: Results

4.2.1 Remarks

With an accuracy of 0.9, only one barrel was not detected correctly. This was the test image,
’003.JPG,’ and the difficulty can be accreditted to the similarity of color of the coke ma-
chine and the barrel, such that not even the implemented k-means was able to differentiate
between the two colors. Thus a reflection on the floor was marked instead.

Throughout the course of developing the algorithm, I faced many problems. One of which

10

was the situation faced by ’006.JPG,’ where the reflections of the barrel was classified as
the same color as the barrel in the first attempt. I was able to solve this using the kmeans
method I described.

The other problem I faced was minimizing computation time, as the images are high resolu-
tion and looping through the pixels one by one would take to long to compute, and classifying
the image as a whole would use too much memory. My first solution to this issue was to
break the image up into chunks of 10,000 pixels and compute the chunks and concatenate the
result. This was still too slow, as I then decided to resize the image to a much smaller reso-
lution, small enough such that it did not compromise accuracy of detection, but significantly
reduce computation time. The resolutions were scaled as follows: 0.07 times smaller for the
2448x3264px images, and 0.2 times smaller for the 900x1200px images. This in combination
with the ”chunking” method enabled my detection to work in about 15 seconds. Wanting
faster, I was able to utilize the Cholesky decomposition to compute my classification in under
0.2 seconds.

11

	Introduction
	Problem Formulation
	Technical Approach
	Labeling
	Color Class Selection
	Annotation

	Training
	Preprocessing
	Calculating MLE parameters of Gaussian model
	Exponential fit for distance estimation

	Segmentation
	Detection

	Results
	Training Results
	Test Results
	Remarks

